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ABSTRACT 

We study a class of finite-dimensional contractive perturbations of shift opera- 
tors of finite multiplicity restricted to left invariant subspaces of vectorial H 2 
spaces. We determine their spectra in terms of the characteristic function of 
the unperturbed operator and the perturbation. 

1. Introduction 

D. N. Clark studied one-dimensional perturbations of shift operators in H 2 

restricted to their *-invariant (left-invariant) subspaces, which are unitary (see [1]). 

In this paper we are interested mostly in special finite-dimensional contractive 

perturbations of  restricted shift operators of  higher multiplicity and the relation 

between the characteristic functions of the perturbed and unperturbed operators. 

This yields information about the perturbation. The results stated in this paper 

have applications to the theory of stability of  linear control systems; these findings 

will be published elsewhere. 

I want to thank D. N. Clark for a preprint of his paper [ l l  which motivated me 

and which was a great help throughout this work. 

Let N be a separable Hilbert space. H2(N) is the Hardy class of order 2, that is, 

the set of N-valued functions on the unit circle satisfying 

1 fo 2" li r il 2 = 2~ I[ f(ea)1[ 2dt < oo 

t Partially supported by the Batsheva de Rothschild Fund for the Advancement of Science 
and Technology. 
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and whose Fourier coefficients vanish for all negative indices. The functions in 

H2(N) have analytic continuation into the unit disc from which they are recoverable 

almost everywhere as radial limits. We will refer to both the function, as defined 

on the unit circle, and to its analytic continuation by the same letter and will work 

with both representations simultaneously. For a comprehensive treatment of the 

H2(N) spaces we refer to [3] and [5]. In this paper we will consider *=invariant 

subspaces M whose orthogonal complement has a representation SH2(N) where 

S is an inner function [3]. Furthermore we will assume S(0) to be purely con- 

tractive at the origin, that is, I-S(O)*S(O)>O. This in turn implies 

I - s ( 0 ) s ( 0 ) *  > 0. 

If N is finite dimensional, as we will generally assume, then I - S(0)*S(0) and 

I - S(0)S(0)* are unitarily equivalent. 

We denote by Pu the orthogonal projection of H2(N) onto M and, if H2(N) 

is embedded in L2(N), then also the projection of L2(N) onto M. We define the 

operator T in M by 

(1) 

It follows that 

TF = PM(zF), for all F ~ M. 

(4)  

(5) 

and 

(6) 

(~*F)(e 't) = e-"~(e-,')*F(e -'t) 

�9 PM = 

-cT = T*'c 

(2) (T 'F)  (z) = F(z) - F(O) 
z 

where T* is the restriction of the left shift in H2(N) to the *-invariant subspace M. 

Given any N-operator valued analytic function A(z) in the unit disk we define 

A(z) by .4(z) = A(~)*. Note that S is inner if and only if ~ is inner. We define 

J~/by 3~r = H2(N) ~ ~H2(N). 

THEOREM 1.1. ([2].) The operator T in M defined by (1) is unitarily equivalent 

to the left shift restricted to 37I. 

We note that the unitary map is given by -c: M -~ 3~t where z is defined by 

(3) (zF)(e ~') = e-i'S(e-tt)*t(e-U). 

For further use we note that 
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where ~F = P~ (zF) for all F ~ ~ .  

LEMMA 1.2. Let ~ ~ N ; then we have the following two cases. 

(i) PM~ = (I -- S(z)S(O)*)~; here P~tr is the projection of  the constant 

function 4. 

(ii) PMe-ttS(eit)~ = e-~t(S(e ~t) - S(0))~, thus (S(z) - S(O))~ /z ~ M for  all ~ ~ N. 

PROOf. (i) Write ~ = ( ~ -  S(z)q)+ S(z)rl, where we want r  S(z)r lEM. 

Hence for all (~  N we must have: 

1 fo 2~ 0 - 2~ (S(e"K,  ~ - S(e")tl)dt = (S(0) ( ,  ~) - (( ,  t/) 

= ( ~ , s ( 0 ) * ~  - 7 )  

which implies t/ = S(0)*r Here we have used the fact that S(e a) is unitary 

almost everywhere, since S is inner by assumption. The condition t/ = S(O)*r is 

sufficient for the above decomposition to hold, since for n _-> 1 and all ~ ~ N 

2--~ ((I - S(e~t)S(O)*)~, S(e~t)e~t() 

--- (4, S z " O  - ( s ( 0 ) %  z y )  = 0 .  

(ii) I f  z is the transformation defined by (3) then z(e-its(e*t)~) = ft. Therefore 

by (4) and (5) 

e M( e-tt S( eit) ~) = z* p ~ z( e -  itS( ett) ~) 

= z*P~(~) = z * ( I -  g(eit)S(O))~ = e-it(S(ei') - S ( 0 ) ) r  

and we have proved (ii). 

Thus in M we have distinguished two subspaees which are defined as follows. 

ko = ( ( t  - S(z)S(O)*)r ] ~ ~ N }  

and 

Following Clark's approach we obtain Lemma 1.3. 

LEMMA 1.3. Let F E M ; then 

(i) (T*F)(z)  = F(z) /z  !f and only if  F •  

(ii) (TF)(z) = zF(z) i f  and only if  F •  o. 
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PROOF. (i) ( T ' F )  (z)  = F ( z ) / z  if and only if F(0) = 0, which is equivalent to 

(F, 0 = 0 (for all ~ ~ N), the inner product taken in L2(N). However since P u F  = F 

we get (F, 0 = (P,~F, ~) = (F, P n O .  But P u ~  = (I  - S(z)S(O)*)~ by Lemma 1.2 

and hence the result. 

(ii) We observe that the unitary map z sends ko onto /~o and Ko onto ~o, the 

subspaces of .Q which are defined by 

~o = 

~o  --- 

z ( I  - S(e")S(O)*)r  

(i) 

(ii) 

PROOF. 

O) 

{(I - S(z)S(O))~ ] r E N} and 

{ (~(z) z S(0)-)~ I ~ ~ N}, for 

= e - i ' S ( e - l ' ) * ( I  _ S(e-i ' )S(O)*)r 

= eU(~(e l') - ~(0))~ 

(Pko • F ) ( z )  = F ( z )  - (1 - S ( z )S (O)* ) r  

and we must have F(0) - (I - S(0)S(0)*)~ = 0. 

(ii) Using the transformation z we have F ( z ) -  ( S ( z ) -  S (O) / z ) r  E K~ if and 

only if (zF) (z) - (I - ~(z)S(0))~ ~ k~- for which a necessary and sufficient condition 

is ~ = (I - S(0)*S(0))- I(TF) (0). 

LEMMA 1.5. 

(i) 

(ii) 

II ( i  - s(z)s(o),)r I1~ = I!r 2 - I I  s (0 ) , r  II 2 

II ll ILs 0) ll  

and similarly 

z(e-~t(S(ett) - S(0))O = e-  ~'S(e-i ,) ,  ( f l ' (S(e- i , )  _ S(0))O 

= (I - S(e~)S(0))~ = (I - S(e"),~(0)*)~. 

Now F _1_ Ko if and only if zF  _Llc o which by part (i) occurs if and only if T*(rF) 

= ( zF ) / z .  But as zT = T*z by (6) we obtain T F  = z* ( ( zF) / z )  = zF.  

LEMMA 1.4. Let  F e M ; then 

(P~oF) (z)  = (I - S(z)S(O)*) (1 - S(0)S(0)*)- 'F(0); 

( S ( z )  - s(o).~ ( i  - s(o)*s(o))-'(~F)(o). (PKoF) (z)  
\ z / 
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The proof is computational and is omitted. 

LEMMA 1.6. 

(i) 

(ii) 

PP.OOF. 

(i) 

T*(I - S(z)S(O)*)~ = - ((S(z) z S(O)-)S(O)*~ 

T ((S(z)  - S(O).)~ = _ (I - S(z)S(O)*)S(O)r 
I 

Israel J. Math., 

( t  - S ( z ) S ( O ) * ) ~  - ( t  - s(0)s(0)*)~. 
T*(I - S(z)S(O)*)~ = 

7. 

- _ s o, 

Z , Z 

= - ( t  - S ( z ) S ( O ) * ) s ( o ) r  

Theorem 1.7 summarizes results needed in the following sections. 

THEOREM 1.7. Let P and Q be strictly positive unitarily equivalent operators 

in a Hilbert space H. 

(i) X is a solution of the inequality P > X * P X  if and only if  X = P - ~ A P  ~ 

with A a contraction in H. 

(ii) X is a solution of P = X * P X  if and only if  X = P - ~ U P  ~ with U isometric 

in H. 

(iii) X is a solution of the system of inequalities P ~ X * Q X  and Q ~_ X P X *  

if and only if  X is a contraction satisfying X P  = QX. 

(iv) X is a solution of the system of equations P = X * Q X  and Q = X P X *  

if and only if  X is unitary and QX = XP.  

PROOF. 

(i) If X = P - ~ A P  ~ and A is a contraction, then 

P - X * P X  = P - (P~A*P-�89 ~) 

= P�89 - A*A)P t > O. 
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Conversely, assume X solves P ~_ X * P X ;  then for each vector x in H we have 

II PSlxl ~ IIPSXxll. Define an operator A in H by APex -- p�89 A is obviously 

a well-defined contractive linear operator. Thus X = P-sAPS .  

(ii) If  X = P - ~ U P  t with U unitary then 

X * P X  = (PsU*p-�89 ~z) = PSU*UP'~ = P. 

Conversely, if P = X * P X ,  we have [IP~Xxll = IIP~x]l. We define U by 

UPSx = P~Xx. Obviously U is isometric and X = P - ~ U P  s. If  H is finite 

dimensional then U is unitary. 

(iii) Let X be a contraction which satisfies X P  = QX. Then also PX*  = X*Q 

holds. Therefore 

(X*X)P  = X*(XP)  = X*(Q.X) = (X*Q)X - ( e x * ) x  = e ( x * x ) .  

Hence, by induction, ( X * X ) P n =  P"(X*X) and, more generally, ( X * X ) f ( P )  

= f ( P )  ( X ' X )  for every polynomial f.  An approximation argument based on the 

spectral theorem implies P'~ (X*X)=  (X*X) P  '~. Therefore X * Q X - - X * X P  

= PsX*XP~<= P. A similar argument yields the other inequality. 

Now assume X solves the system of inequalities P > X * Q X  and Q > X P X * .  

Since Q and P are unitarily equivalent, by assumption, we have Q -- U*PU for 

some unitary operator U. Hence P >= X * Q X  = X * U * P U X  = (UX)*P(UX).  By 

part (i) we have U X  = P - * C P  s where C is a contraction, so X = U*P-'~CP '~. 

But UQ = PU implies UQ ~ = P tU;  therefore it follows that U*P-~Z=Q-'~U * or 

X = U * p - � 8 9  s = Q-S(U*C)P ~z = Q-sAp'~ where A is a contraction. 

Arguing similarly, starting from the inequality Q > x P x * ,  we obtain X 

= Q�89 -�89 where A 1 is a contraction. 

Thus Q~vA~P-S = Q.-sAp!" or QA t = AP which implies QSA t = AP s. Hence 

X = Q~AxP -�89 = APiP  -~ = A and similarly X = AI. Thus X is a contraction 

and moreover it satisfies X P  = QX. 

(iv) If  U is unitary and P = U*QU then obviously UP = QU. 

Conversely if X solves P = X * Q X  and Q = X P X *  we obtain P = X * Q X  

= (X*X)P(X*X) .  By part (ii) X * X  = P - ~ V P  "~ with V isometric. Since x * x  is 

self adjoint we have P~V*P -~ = P - ~ V P  § or PV* = VP which implies p�89 

= VP 't. Hence X * X  = V* and X * X  = V by taking adjoints. Thus V is a positive 

isometry and therefore we must have V = I. So X * X  -- I and X is an isometry. 

From P = X * Q X  we get PX* = X*Q which is equivalent to X P  = QX. Starting 
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from the second inequality and using the same argument we get the result that X* 

is isometric, thus X is unitary. 

2. The perturbations 

We define the class of perturbations under study in this section as follows. 

DEFINITION 2.1. Let A be a bounded linear operator on N. The linear trans- 

formation Z(A) in M is defined by 

zF(z) if F .I_K o 

(Z(A)F) (z) = (I - S(z)S(O)*)A4 if F(z) - (S(z) - S(0)) 4.  
z 

REMARK 2.2. It follows that Z(A)* is given by 

f if 
- L s(o, = , 

We also note that r = Z ( -  S(0)). 

THEOREM 2.3. Let the Hilbert space N be finite dimensional; then 

(i) Z(A) is a contraction if and only if A is a contraction which satisfies 

(7) AS(O)*S(O) = S(O)S(O)*A; 

(ii) Z(A) is unitary if and only if A is unitary and satisfies (7). 

PROOF. We note that Z(A) maps K~ into k~- and Ko into ko. Since Z(A) is 

isometric on K~ it will be a contraction if and only if it is contractive on Ko. 

This amounts to 

11Ar 1[' -1[ S(O)*Ar l[ ~ Z 114112 -[1S(0)4 l[ ~ for all 4 �9 N. 

Similar reasoning applied to Z(A)* results in the analogous inequality 

[I A*4112 - l [  S(O)A*4112 N 114112 _ II s(0)*4112 for all ~ �9 N. 

These two inequalities are easily seen to be equivalent to the following system of 

operator inequalities: 

I - S(0)*S(0) > A*(I - S(O)S(O)*)A and 
(8) 

I - S(0)S(0)* > A(I - S(O)*S(O))A*. 

Now since N is finite dimensional I - S(0)*S(0) and I - S(0)S(0)* are unitarily 
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equivalent and invertible by our assumption on S. Thus we can apply Theorem 1.7 

to obtain the result. We note that (7) holds if and only if 

(9) A ( I  - S(0)*S(0) ~ = (I  - S(O)S(O)*)~A and 

(10) (I  - S(O)*S(O))~A * = A*( I  - S(0)S(0)*)* hold. 

COROLLARY 2.4. l f  A is contract ive ,  that  is, I - A * A  ~_ 0 and  satisfies (7), then 

(11) ( I  - S(O)*S(O))~A*A = A * A ( I  - S(0)*S(0)) ~ a n d  

(12) (I  - S(O)*S(O))~(I - A ' A )  ~ = (I  - A ' A )  �89 (I  - S(0)*S(0)) ~. 

PROOF. Follows from (9) and (10). 

Similar relations can be obtained by duality. 

3. Characteristic functions of perturbations 

In this section we apply the Sz.-Nagy-Foias theory of characteristic functions 

for contractions in a Hilbert space to study properties of the family of perturbations 

Z(A)  defined in Definition 2.1. This is done by calculating the characteristic 

function of Z(A) .  

We recall (see [5]) that the characteristic function of  a contraction T in a 

Hilbert space H is a triple {~r,  ~ r ' ,  Or()-)} where 

D r = ( 1 - T ' T )  ~, D r �9 = ( I - T T * )  �89 and 

D r = DTH, D r .  = DT.H and 

Or()- ) = [ - T +  2DT,(1 -- ) . T * ) - ' D T ] ] ~  r. 

Dr, D r. are the defect spaces of T and measure the difference of T from being 

unitary. Since we have 

(13) TDT = D T . T  

Or is an analytic operator-valued function whose values are contractive operators 

from -~r into Dr.. 

LEMMA 3.1. I r A  is a str ict  contrac t ion  in N sa t i s f y ing  (7) then ~zta~ = Ko. 

~z(,l). = ko and  

(15)  D z ~ . ~ . ( I -  S (~)S(0)*)~  = ( t  - S(z)S(O)*)(t  - A A * ) ~  
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for  all ~ e N. 

PROOF. From Definition 2.1 we have Z(A) = W +  R where W is a partial 

isometry defined by W = Z(A)P~o with initial space K~ and 

(RF) (z) = (! - S(z)S(O)*)A(I - S(0)*S(0))- l(zF) (0). 

Thus F_I_Ko implies (TF)(0) = 0 or RF = 0. Since W*lk o = 0 we obtain 

W*R = 0 and therefore also R*W = 0. It follows that 

1 - Z(A)*Z(A) = 1 - W ' W -  W*R - R ' W -  R*R = I - W ' W -  R*R. 

Since W is a partial isometry with K~ as initial space, W ' W =  Pr~and  I - W*W 

= Pro. From the definition of R we easily obtain 

(R*RF)(z) = (S(z) z S(O))A*A~ for F(z) - S(Z) -z S(O) ~. 

Combining the results we obtain 

((I - Z(A)*Z(A)F)(z) = (S(z) --z S(0)) (i _ A*A)(I - S(O)*S(O))-t(rF)(O). 

By approximation arguments used before we have 

((I - Z(A)*Z(A))~F) (z) 
(t6) 

_ S ( z )  - S(0) ( I  - A * A ) � 8 9  - S(0)*S(0))- t(xF) (0). 
z 

As we assumed A to be strictly contractive, ( I -  A 'A)  ~ is onto N, hence 

( I -  Z(A)*Z(A)) �89 is onto K o, and thus ~z(,t) = Ko and (14) holds. The results 

for Dz(ar are similarly obtained. 

Now we proceed with the calculation of the characteristic function of Z(A). 

For this we have to calculate 

( l - 2 Z ( A ) * )  -1 ((S(z) z S(0))F/. 

F o r  < 1, I - is invertible. Let 

(I - 2Z(A)*)-~ (S(Z) zS(O))~l = F(z). 

Then 

S(z) -'-z S(O) ) t  1 = (I - AZ(A)*)F(z) 
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or 

2 
= F(z)  - z {F(z) - (I  - S(z)S(O)*) ( I -  S(0)S(0)*)- iF(0)} - 

- 2(S(z)  ; S ( O ) ) A * ( I -  S(O)S(O)*)-'F(O) 

F(z)  = {(S(z) - S (0 ) ) [ t /+  2A*(I - S(0)S(0)*)- iF(0)]  - 

(17) - 2(1 - S(z)S(O)*)(I  - S(0)S(0)*)- 'F(0)} [z - 2. 

Since F is analytic in the open unit disc, the numerator  vanishes at z = ).. Thus we 

obtain 

( ,  - s ( o ) s ( o ) . , E ,  - - - s ( o , ) , , .  

When we substitute this value back into (17) we obtain 

F(z)  = {(S(z) - S(0) ){ t /+  A * [ ( I - S ( 2 ) S ( O ) * ) - ( S ( 2 ) - S ( O ) A * ] - ' ( S ( 2 ) - S ( O ) ) t i } -  

- (I - S(z)S(O)*) [(I - S(2)S(0)*) - (S().) - S(0))A*] - t (S(2) - S(0))t/} ]z - 2. 

Since Dz(A), = Dz(A ), P*o we have 

(PaoF) (z) = (I - S(z)S(O)*) (( - S(O)S(O)*)- 'F(O) 

: ( 1 -  

and 

( D z ( A ) . F ) ( z )  = 

( I  - S ( z ) S ( O ) * )  ( I  - A A * )  ~ [ ( I -  S0.)S(0)*) - (S(2) - S(0))A*J-t (,(~)-~S(0).) 

Combining this with Definition 2.1 we summarize the results in Theorem 3.2. 

THEOREM 3.2. I f  A is purely contractive in N and satisfies (7) then Z(A)  is a 

contraction in M whose characteristic funct ion is {Ko, ko,Oz(~)().)} whereOz(a)(2) 

is given by 

(18) | ( S ( z ) -  s (O))  z ~ = (I - S(z)S(O)*) { -  A + ( I - A A * )  ~ 

[ ( I -  S(2)S(0)*)-  ( S ( 2 ) -  S(0))A*] - t  (S(2) - S(0)) (I - A*A)~}~. 

Expression (18) can be brought  into a more appealing and clarifying form. 



172 P . A .  F U H R M A N N  Israel J. Math. ,  

THEOREM 3.3. I f  A is p u r e l y  con t rac t i ve  in N and  sat is f ies  (7), then Z ( A )  is a 

con t rac t ion  in M whose charac t e r i s t i c  f u n c t i o n  is {Ko,  ko, Oz(a)0.)).Oz(a) is given  

by  

( S ( z ) -  S(O).)~ = ( I -  S(z)S(O)*)G(2)~ where  (19) 
\ z ] 

(20) (I - S(O)S(O)*)~G(;O(J - S(0)*S(0)) -~ 

= (I  - A A * ) r  - F ( X ) A * ) - I ( F ( ; 0  - A)ff - A ' A )  - ~  and  

(21) F(A) = (I  - S(O)S(O)*)~(I - S(;t)S(0)*)- '(S(;0 - S(0)) (I - S(0)*S(0)) - ~. 

Note  that we obtain (I  - S(O)S(O)*)~G().)(I - S(0)*S(0)) -~t as a composit ion of  

two matrix fractional linear transformations.  For  the theory of  these t ransforma- 

tions, refer to [4]. 

PROOF. F rom Theorem 3.2 we have 

G( ).) =: - A + (1 - A A * ) ~ [ ( I  - S(;0S(0)*) - (S(~.) - S(0))A*]- t  

(S ( )~) -  S(0)) �9 (I  - A ' A )  ~. 

From the equality A ( A * A )  = ( A A * ) A  we obtain, by familiar arguments,  

(22) A ( I  - A ' A )  ~ = (I  - A A * ) ~ A ,  

(23) ( I  - A A * ) - ~ A  = A ( I  - A'A)  -~, and 

(24) ( I  - A A * ) - ~ A ( I  - A ' A )  ~t = A.  

Using this we obtain 

a(,~) = ( I  - A A  *) - �89 - A + ( I  - A A*)  [ I  - ( I  - S00S(0)*) - ' ( s o . )  - S(O))A*] - t 

�9 ( / -  S(;t)S(0)*)-'(S(,;t) - S(0))} ( I  - A ' A )  ~ 

= ( I - A A * ) - ~ { - A  + ( I - A A * )  

[I-(X-S(0)s(0)*)-~F(~XI-S(0)*s(0))~A*]-I 
�9 (I_S(O)S(O)*)-~F(~)(I-S(O)*S(O))~}(I_A,A)~. 

Using (9) and Corollary 2.4 obtain 

G().) = (l  - S(0)S(0)*)- �89 - a a * ) -  ~{ - A + ( I -  A A * )  (I- F(~.)A*)- I F(3.)} 

�9 ( I  - A * A ) ~ ( I - S ( O ) * S ( O )  ~ 

= ( I -  S ( O ) S ( O ) * ) - ~ ( I - A A * ) - � 8 9  

�9 �9 { - A ( I -  a * A ) - t  + ( l - r ( ; . ) A * ) -  1F(~)}q- A*A)~(I- S(0)*S(0))~ 
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= ( I - -  S ( 0 ) S ( 0 ) * ) -  ~(I - aA*)f(I - F ( ) , ) A * ) - I .  

�9 { - (z-r() , )a*)A(i-  a , a ) -  1 + r(J.)} ( t  - A * A ) ~ ( t  - S(0)* S(0))~. 

However, using the relations 

( t - A A * ) - ' A  = A ( Z - A * A ) - '  and I + A * ( I - A A * ) - ' A  = ( t - A ' A )  -1 

it follows that 

G().) = ( t -  S(O)S(O)*)-*(I-AA*)* ( t - r ( Z ) A * ) -  ' �9 

�9 ( r ( ~ ) - A )  ( t - A * a ) - ~ ( I -  S(0)*S(0) )~  

which is equivalent to (20). 

R~MARK. 3.4. Under the assumptions of Theorem 3.3 if 

S(2)S(O)*S(O) = S(O)S(O)*S(2) for all 2, [21< 1 (25) 

then 

(26) 

173 

r ( ) , )  = ( t  - s ( ) , ) s ( 0 ) * ) - 1 ( s o . )  - s ( o ) ) .  

As corollaries to the above calculations we obtain the following results. 

THEOREM 3.5 (i) Under the assumptions of Theorem 3.2, Z(A)", Z(A)*" con- 

verge to zero in the stron9 operator topology. 

(ii) The spectrum of Z(A) is the union of the set of points 2, on the unit circle 

where S(z) has no analytic continuation and the set of points ), in the open unit 

disk at which F(,~.) - A is not invertible. 

PROOF. S being inner has radial limits almost everywhere which are unitary 

transformations in N. Since fractional linear transformations are continuous and 

map unitary operators into unitary operators it follows that F(),) and 

( I -  S(O)S(O)*)~:G(),)(I- S(0)*S(0)) -~ are also inner functions. Thus | is 

inner and hence part (i) follows from [5, Th. VI.2.3]. 

To prove part (ii), we recall the characterization of the spectrum of a completely 

non-unitary contraction in terms of its characteristic function Or().) [5, Th. VI.4.1] : 

the spectrum of T is the union of the set of points ), on the unit circle where O r 

has no analytic continuation and the set of points ). in the open unit disk where 

Or(),) is not invertible. 

Notice that since the fractional linear transformations given by (20) and (21) 

preserve analyticity,| ) has analytic continuation at exactly the same points 

of the unit circle where G(),) and 1"(2.) have continuation. Thus this part of the 

spectrum of T is stable under the perturbations considered. This is in perfect 
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agreement with Weyl's theorem which states that compact perturbations can only 

move the point spectrum. As for eigenvalues of Z(A), they are given by points 

2 of the open unit disk at which GO,) is not invertible; by (20), these are the points 

2 where F(2) - A is not invertible. 

The above argument fails for the case where Z(U) is unitary. However [1, 

Th. 3.2] can still be generalized using Clark's own method. 

THEOREM 3.6. Let U be unitary in N, N finite dimensional, and let U satisfy (7). 

Then the spectrum of Z(U) is the union of the set of points 2 of the unit circle at 

which S(z) has no analytic continuation and the set of points 9. of the unit circle 

at which S(z) has an analytic continuation but F ( 2 ) -  U is not invertible. 

PROOF. By Weyl's theorem it suffices to determine the eigenvalues of Z(U) 

which, since Z(U) is unitary, are the complex conjugates of  the eigenvalues of 

Z(U)*. For the proof it is enough to show that a point 2 on the unit circle where S 

has an analytic continuation is an eigenvalue of  Z(U) if and only if F(2) - U is 

not invertible. Since 

(Z(U)* - T*)F(z) = (S(z) z S(O)) (U* + S(O)*)(I - S(O)S(O)*)-IF(O), 

solving Z(U)*F = ~[F reduces to 

(T* - ~F(z) = ( S ( z ) -  S(O)) z (U* + S(O)*)(I - S(O)S(O)*)-IF(O) 
(27) 

_ - ( S ( z )  z - s(o)) 

where ~ = (U* + S(0)*) (I - S(0)S(0)*)-1F(0). 

Now ( T * -  ,~)F(z) = F(z) - F(O) ,~F(z) and we obtain 
z 

F(z) = F(O) + (S(z) - S(0))~ 
1 - ~ z  

Since S has an analytic continuation at 2, so have all functions in M [3, p. 76], 

hence we must have F(0) = - (S(2) - S(0))~. A simple computation yields 

Substituting back into (27) we obtain 

(s Z -z _ ,  § § - - = o. 
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F rom (7) it follows that 

(U* + S(0)*) (I - S(0)S(0)*)- t  = (I - S(0)*S(0))- t (U* + S(0)*). 

Thus ). is an eigenvalue of  Z ( U )  if and only if for some non-zero r e N 

{ - ( t  - S(0)*S(0)) + (U* + S(0)*) (S(~) - S(0))}r = 0 

which, since N is finite dimensional, amounts  to 

{ - ( t  - S(0)*S(0)) + (U* + S(0)*) (S(Z) - S(0))} 

being non-invertible. But since 

{ - ( t  - S(0)*S(0)) + (U* + S(0)*)(S(~) - S(0))} 

= u*{s(~)  - s (o)  - u + u s ( o ) * s ( ~ ) } ,  

{ - (I - s(0)*s(0)) + ( u *  + s(0)*)(s(2)  - s(0)} is invertible if and only if 

{S(2) - S(O) - V + US(O)*S(2)} is invertible. 

Taking adjoints, then multiplying on the left by S0.)* (which is invertible and 

unitary wherever S has an analytic continuation),  and on the right by U (which 

is unitary), one sees that {S(2) - S(O) - U + US(O)*S(2)} is invertible if and only 

if {S0.) - S(0) - U + S0.)S(0)* U} is invertible. 

Now we show that {S().) - S(0) - U + S().)S(0)* U} is invertible if and only if 

F().) - U is invertible. F rom (9) we have U = ( I -  S(O)S(O)*)~U(I - S(0)*S(0)) -~, 

hence 

u = ( t -  s (o)s(o)*)*{( t -  s(,l)s(o)*)- s(o)) - u} ( t -  s;o)*s(o))-* 

= (I  - S(O)S (0)*)�89 - S(2)S(0)*)- 1 { S(2) - S(0) - U - S(~.)S(0)* U}( I  - S(0)*S(0))- ~ 

which is invertible if and only if { S Q . ) - S ( O ) -  U-S() .)S(O)*U} i~ invertible and 
the p roof  is complete. 
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